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A modified version of the usual viscous fingering problem in a radial Hele-Shaw cell with immiscible fluids
is studied by intensive numerical simulations. We consider the situation in which the fluids involved are
miscible, so that the diffusing interface separating them can be driven unstable through the injection or suction
of the inner fluid. The system is allowed to rotate in such a way that centrifugal and Coriolis forces come into
play, imposing important changes on the morphology of the arising patterns. In order to bridge from miscible
to immiscible pattern forming structures, we add the surface tensionlike effects due to Korteweg stresses. Our
numerical experiments reveal a variety of interesting fingering behaviors, which depend on the interplay
between injection �or suction�, diffusive, rotational, and Korteweg stress effects. Whenever possible the fea-
tures of the simulated miscible fronts are contrasted to existing experiments and other theoretical or numerical
studies, usually resulting in close agreements. A number of additional complex morphologies, whose experi-
mental realization is still not available, are predicted and discussed.
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I. INTRODUCTION

Among natural nonequilibrium growth processes, the vis-
cous fingering problem in Hele-Shaw cells has attracted
much attention �1� since the seminal work by Saffman and
Taylor �2�. This classic hydrodynamic instability emerges
when a less viscous fluid pushes a more viscous one in the
narrow gap of a Hele-Shaw cell, leading to the formation of
nontrivial fingerlike structures. In the outward radial flow
version of the problem the less viscous fluid is injected at the
center of the cell. Experiments involving the radial flow of
immiscible fluids demonstrate that as the size of the fluid-
fluid interface grows outward, fingers spread and start to split
at their tips, creating fanlike, branched patterns �3–5�. State-
of-the-art boundary integral �6� and conformal mapping �7�
numerical simulations have accurately reproduced the struc-
tures observed in such experiments.

Researchers have also studied the complementary case of
the usual outward radial flow where a blob of a more viscous
fluid, surrounded by a less viscous fluid, is sucked and drawn
radially inward into a sink located at the center of the Hele-
Shaw cell. Laboratory experiments of inward flow using im-
miscible fluids �3,4� show the growth of fingering patterns
which are very different from those arising in outward radial
flow: multiple penetrating fingers of the less viscous fluid
compete, and eventually one of them reach the center, before
all the more viscous fluid is sucked out. In contrast to the
outward flow case, tip splitting of inwards fingers is not de-
tected. Boundary integral numerical simulations have also
been performed for the suction of immiscible fluids in Hele-
Shaw cells �8,9�. However, these numerical studies focused
on the understanding of the regularizing effects of surface
tension, and not exactly on the precise morphological de-

scription of the patterns. Equivalent experimental and nu-
merical studies using miscible fluids are still inexistent.

Although the majority of the studies of unstable displace-
ment in radial Hele-Shaw flows have been undertaken with
immiscible fluids, some work has also been done addressing
the outward flow with miscible fluids. A few experimental
investigations detected the development of �i� flowerlike pat-
terns �10� qualitatively similar to ones found in immiscible
outward radial flow, and �ii� fractallike structures �11,12�.
The miscible patterns obtained in Refs. �11,12� are typically
more ramified and present fingers that are thinner than their
immiscible counterparts �3–5�. Another peculiar feature of
these miscible structures is the observation of finger inter-
penetration. Other than these few morphological features, not
much has been revealed experimentally. On the theoretical
side, most of the work on outward radial miscible flows are
restricted to purely analytical calculations addressing the lin-
ear stability of the mixing front �10,13,14�. The theoretical
description of fully nonlinear stages of the miscible radial
displacement through numerical simulations has been over-
looked. In addition to providing useful insight about the mor-
phology of possible miscible patterns, a numerical study
could also offer a useful link between miscible and immis-
cible radial flows by the introduction of the so-called Ko-
rteweg stresses �15–20� which mimic surface tensionlike ef-
fects in miscible systems.

An alternative way of obtaining complex radial viscous
fingering patterns can be provided by rotating the Hele-Shaw
cell around an axis perpendicular to the plane of the flow. In
this case the interface instability is driven by the density
difference between the fluids. Since the original work by
Schwartz �21� this problem has been largely investigated,
both experimentally and theoretically �see, for instance,
Refs. �22–26�, and references therein�. The rotating flow pat-
terns exhibit a variety of shapes: they may change from wide
teardroplike structures, to thin filamented arms presenting
swelled ends, or to a branched, backbone architecture with
nearly constant finger widths. The corresponding problem
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with miscible fluids has also been investigated through nu-
merical simulations �27,28�. Since both the morphology of
the resulting patterns and the driving forces involved are so
distinct when injection, suction, and rotation act separately,
one interesting possibility would be to consider the simulta-
neous action of injection �or, suction� plus rotation in mis-
cible radial flows, where distinct morphologies and unex-
plored nonlinear behavior would certainly arise.

Still regarding the rotating Hele-Shaw situation, it is
worth noting that relatively little attention has been paid to
the effects due to the Coriolis force, which is usually ne-
glected as in Refs. �22–28�. Curiously, with the exception of
the work performed in �21�, only very recently the role of the
Coriolis force in rotating Hele-Shaw flows has been exam-
ined �29–34�. The inclusion of the Coriolis force follow two
different approaches: in Refs. �21,33,34� the Coriolis force
contribution is included in an ad hoc manner, so that it is
added directly in a gap-averaged two-dimensional Darcy’s
law. On the other hand, in Refs. �29–32� a more rigorous and
systematic procedure is followed, where the Coriolis force
term is introduced already at the level of the three-
dimensional Navier-Stokes equation. Comparison between
these two approaches supports the generality of the first-
principles method employed in �29–32�, indicating that the
model employed in �21� can lead to inaccurate predictions
already at the early linear level. A final point of interest refers
to a suitable description of the advanced time stages of the
interfacial evolution when the Coriolis force is significant.
Existing numerical studies of both immiscible �21� and mis-
cible �33,34� flows in rotating Hele-Shaw cells including Co-
riolis follow Schwartz’s ad hoc approach, and not the more
general one proposed in Refs. �29–32�. In this sense, the
fully nonlinear stages of the problem have not yet been ap-
propriately modeled.

In this work the dynamics of the diffusing interface sepa-
rating two miscible fluids in a radial Hele-Shaw cell is stud-
ied by intensive and highly accurate numerical simulations.
We examine the interplay among injection, suction, diffu-
sive, Korteweg stresses, centrifugal, and Coriolis effects in
determining the shape of the fingering patterns. In particular,
the role of the Coriolis force is included by following the
theoretical model presented in Refs. �29–32�. The remainder
of the paper is organized as follows: Section II formulates
our theoretical approach, presents the governing equations,
and describes the numerical scheme we have implemented to
study the problem. Section III presents and discusses our
numerical results: Sec. III A focus on the outward radial flow
in which one of the fluids is injected into the Hele-Shaw cell,
while Sec. III B analyzes the corresponding inward flow
case, in which the inner fluid is sucked from the cell. Several
morphological behaviors are introduced, and a number of
interesting pattern forming phenomena are revealed and dis-
cussed. A brief summary of our main results and conclusions
are presented in Sec. IV.

II. BASIC EQUATIONS AND NUMERICAL APPROACH

Consider a Hele-Shaw cell of gap thickness b containing
two miscible, incompressible, viscous fluids �see Fig. 1�. De-

note the densities and viscosities of the fluids, respectively as
�1, �2 and �1, �2, and assume that �2��1 and �2��1. In
Fig. 1 fluid 2 is the dark fluid, while fluid 1 is the light one.
Both outward and inward radial flows are considered, where
injection as well as suction are performed at a constant flow
rate Q, equal to the area covered per unit time. The lower
�upper� plate is located at z=0 �z=b�, where the z axis points
in the direction perpendicular to the plates. The Hele-Shaw
cell can rotate in the counterclockwise direction with con-
stant angular velocity �=�ẑ about the z axis, where ẑ is a
unit vector pointing along this axis. Initially, the mixing in-
terface is a circle, and a Cartesian coordinate system �x ,y ,z�
is defined in such a way that its origin is located at the center
of this circular region. Driven by the combined action of
injection �or suction� and rotation, as time progresses the
fluids begin to mix diffusively giving rise to different types
of complex interfacial patterns.

The equations governing the dynamical evolution of the
system are the so-called gap averaged Hele-Shaw flow equa-
tions which, in a reference frame rotating with the cell, are
�17,27,28,31�

� · u = 0, �1�
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FIG. 1. �Color online� Schematic representation of radial flow in
a Hele-Shaw cell with miscible fluids. The inner fluid can be in-
jected �outward flow� or sucked �inward flow� at the origin of the
coordinate system with a constant aerial rate Q, and the cell may
rotate in the counterclockwise direction around the z axis with an-
gular velocity �. In �a� the less viscous and lower density fluid
�light color� is the inner fluid, while in �b� the inner fluid �dark
color� is more viscous and has higher density.
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�P − ��2r −
D
C ẑ � ��P − ��2r�

= −
12�

b2C
u + � · ��̂��c���c�T� , �2�

�c

�t
+ u · �c = D�2c . �3�

Equation �1� expresses the incompressibility condition,
where u�x ,y�=�0

bv�x ,y ,z�dz /b denotes the two-dimensional
�2D� gap averaged velocity, and v�x ,y ,z� is the full three-
dimensional �3D� velocity field. An augmented Darcy’s law
is expressed by Eq. �2� where P is the total pressure includ-
ing the hydrodynamic pressure p and the additional pressure
� due to Korteweg stresses, i.e., P= p+��c�, where �17�

��c� =
�̂

3
�� �c

�x
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1 − 
c
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�	 �4�

with 
= ��2−�1� /�2, �̂ and 	 denoting the two constant Ko-
rteweg stress coefficients. The Korteweg stress contribution
is given by the second term on the right-hand side of Eq. �2�,
and also by the additional pressure �. Both centrifugal and
Coriolis forces are taken into account on the left-hand side of
Eq. �2�, where r is the position vector of a fluid element. The
gap averaged concentration equation is given by Eq. �3�,
where the concentration of the fluid 1 is represented by c,
and D is the constant diffusion coefficient.

The Korteweg stress contribution, which is not accounted
for by the standard Navier-Stokes stress tensor of a Newton-
ian fluid, is related to concentration gradients that arise at the
mixing region separating two miscible fluids. When a pair of
miscible fluids are brought into contact, a fairly steep con-
centration gradient “interface” is formed between them. This
interface is regarded not as a singular surface but rather as a
diffuse boundary of effectively finite thickness, whose local
equilibrium and transport properties, particularly the concen-
tration, vary continuously across this interfacial transition re-
gion. This raises the possibility for the presence of something
similar to an interfacial tension between miscible fluids. In
Ref. �15� the history of the subject is presented over more
than a century with many experimental illustrations. Such
stresses were first postulated back in 1901 by Korteweg �16�
who, on the basis of an ad hoc constitutive equation, sug-
gested the existence of what can be phenomenologically de-
scribed as a transient surface tension at the miscible inter-
face. More recently, an interesting experimental work by
Joseph �15� on miscible displacement renewed interest in
Korteweg’s original work, where it has been found that drops
of water rising in glycerin are characterized by shapes that
resemble those commonly seen in immiscible flows. This
stimulated a host of further research in this area, with strong
experimental �19,20� and numerical �28,35� evidence that
these stresses do mimic surface-tension-like effects in mis-
cible fluids.

The seminal work by Hu and Joseph �17� formulated the
gap averaged equations �similar to our Eqs. �1�–�3�� to ac-
count for Korteweg stresses in miscible Hele-Shaw flows. In
Ref. �17� the original momentum equation is supplemented
by a nontrivial driving force involving gradients of the con-
centration, and by a modified pressure �a conventional one
plus a “concentration pressure”� as represented in Eqs. �2�
and �4�. In this work, even though all cases we simulate are
legitimately miscible, we use the Korteweg stress to reintro-
duce surface-tension-like effects into the miscible scenario.
Therefore, we can simulate radial miscible displacements
with different magnitudes for the Korteweg stress effect, just
like people study immiscible flows with different surface ten-
sions. This provides a very useful tool which allows us to
make a parallel between our simulated miscible patterns un-
der strong Korteweg effects and existing numerical and ex-
perimental results for radial Hele-Shaw flow with immiscible
fluids.

Another noteworthy point refers to the generalized Darcy-
like law shown in Eq. �2�. As usual, it can be obtained by
averaging a 3D Navier-Stokes equation over the gap direc-
tion. As shown in Ref. �29�, although the “standard” inertial
terms ��v /�t+ �v ·��v� appear in the original Navier-Stokes
equation, they are later dropped by virtue of the assumed
smallness of some reduced Reynolds numbers. On the other
hand, the Coriolis force term survives under such gap aver-
aged procedure. In fact, under the customary circumstances
of rotating Hele-Shaw flows, the Coriolis force effects re-
lated to a rotational Reynolds number are much more rel-
evant than other inertial contributions. Therefore, even
though the “standard” inertial terms are negligible, and do
not contribute to Eq. �2�, Coriolis effects are indeed signifi-
cant and can play an important role in rotating Hele-Shaw
flows. The typical values of the rotational Reynolds numbers
we use in our simulations are not too large �they vary be-
tween 0 and 0.07�, but are consistent with the magnitudes
commonly found in real experiments in rotating Hele-Shaw
cells �23�, and are capable of producing the characteristic
type of chiral growth expected from Coriolis force effects.

The Coriolis force prefactors C and D in Eq. �2� are ex-
pressed as �31�

C =
sinh 
12 Re − sin 
12 Re

2 Re
12 Re�cosh 
12 Re + cos 
12 Re�
, �5�

D =
1

2 Re�1 −
sinh 
12 Re + sin 
12 Re


12 Re�cosh 
12 Re + cos 
12 Re�
� .

�6�

We point out that, in contrast to the immiscible case studied
in Ref. �31�, in Eqs. �5� and �6� the parameter Re defines a
modified Reynolds number for the mixture, which depends
on the local concentration, on the dimensionless viscosity
difference between the fluids, and also on the Reynolds num-
bers of the fluids as
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Re =
��b2

12�
= �c�1 + A

1 − A
	c−1

Re1 + �1 − c��1 + A

1 − A
	c

Re2� ,

�7�

where

Re1 =
�1�b2

12�1
, Re2 =

�2�b2

12�2
, A =

�2 − �1

�2 + �1
�8�

denote the rotational Reynolds numbers of fluids 1 and 2,
and the viscosity contrast, respectively. The Reynolds num-
bers presented in Eq. �8� work as controlling parameters that
regulate the strength of the Coriolis force, which is absent
when Re1=Re2=0. In deriving Eq. �7� we have followed the
standard approach used in Refs. �36,37�, and assumed that
the viscosity of the mixture varies exponentially with con-
centration, whereas its density has a linear dependence with
c according to

��c� = �1 exp��R�1 − c��� , �9�

��c� = c�1 + �1 − c��2, �10�

with R=ln��2 /�1� representing a viscosity parameter. It is
worth noting that the Reynolds number of the mixture de-
fined in Refs. �33,34� does not depend on the concentration.

At this point we take a moment to discuss the validity and
limitations of the Hele-Shaw model as expressed by the gap
averaged Eqs. �1�–�3�. A very important requirement for the
validity of the theoretical approach we use refers to the fact
that the velocity profile across the Hele-Shaw cell gap needs
to remain parabolic �38,39�. In addition, it is assumed that
the Taylor dispersion �40� is significant, so that the concen-
tration gradients are not high across the gap �17,39�: since
there is no net flux across the gap direction �z axis� it is
reasonable to assume that the concentration is independent of
z. In fact, it has been shown in Refs. �39,42–46� that, if the
magnitude of the characteristic Péclet number �relative mag-
nitude of convective and diffusive effects� of the system is
not larger than a certain upper bound, the miscible Hele-
Shaw problem is accurately described by Eqs. �1�–�3�. Under
such circumstances the gap averaged concentration equation
�3� can be reasonably approximated by its original 3D form,
where v is replaced by u �17,18�. It should be pointed out
that very recently a more rigorous approach for the deriva-
tion of the gap averaged concentration equation �which also
results in the same form as the equivalent 3D equation� has
been proposed in Ref. �41�, where it has been shown that the
Péclet number should be suitably large for the averaging to
work.

In any case, as extensively discussed in Refs.
�28,39,42–46�, if the Péclet number is higher than the upper
bound value mentioned above, a narrow finger grows in the
central region of the gap, so that the velocity profile is not
simply parabolic, leading to the formation of strong concen-
tration gradients in the z direction. This defines a truly three-
dimensional problem, where Eqs. �1�–�3� are no longer valid.
We stress that the values of the Péclet number we use in our
numerical simulations are safely below the typical upper
bound value for Hele-Shaw flows ��O�104�� �28�, but still

sufficiently large �O�102�−O�103�� to ensure the applicabil-
ity and reliability of Eqs. �1�–�3� in accurately describing our
physical problem. At this Péclet number regime the good
agreement between the Hele-Shaw model with the 3D Stokes
model and actual experiments, as shown in Refs. �44–46�,
provides a solid verification for the validity of the Hele-Shaw
approach as described by Eqs. �1�–�3�. Additional validation
of the depth-averaging approach and of our numerical meth-
odology has been provided by the fact that highly nonlinear
numerical simulations for miscible displacements in rotating
�28� and lifting �35� Hele-Shaw cells compare quite well
with the corresponding immiscible patterns obtained by ex-
periments and boundary integral simulations, when suffi-
ciently high Korteweg stresses are introduced.

In order to render the governing equations �1�–�3� dimen-
sionless, an arbitrary length L �47,48�, and the density differ-
ence ��=�2−�1 are taken as characteristic scales. In addi-
tion, we scale the viscosities and the flow velocity with �1
and Q /2L, respectively. Together with a characteristic pres-
sure 6�1Q /b2, the dimensionless set of the governing equa-
tions takes the form

� · u = 0, �11�

�P = − ��Eu + F�ẑ � u�� + ��r + � · ����c���c�T� ,

�12�

�c

�t
+ u · �c =

1

Pe
�2c , �13�

where E=C / �C2+D2�, and F=D / �C2+D2�. Note the defini-
tion of additional dimensionless parameters, namely the Pé-
clet number Pe, the rotation number �, and the Korteweg
constant � which are respectively defined as

Pe =
Q

2D
, � =

���2b2L2

6�1Q
, � =

�̂b2

6�1QL2 . �14�

Thus, the most general version of the problem requires the
definition of the six dimensionless parameters listed in Eqs.
�8� and �14�. We point out that the values of the parameters
used in our simulations are absolutely consistent with the
typical order of magnitudes of the corresponding physical
quantities measured in existing laboratory experiments and
predicted by other theoretical studies.

For the purpose of solving the governing equations
numerically, it is convenient to recast them into the
well-known streamfunction-vorticity formulation �� ,��
�17,27,33,37,49�. By employing such an approach Eqs. �12�
and �13� can be rewritten as

�2� = − � , �15�
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� = − R � � · �c +
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	 −

1
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−
�E
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� ��

�y
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�x
+

�F

�y
� ��
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	 −

�

E�
�y

�c

�x
− x

�c
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−
�

E�
� �c

�x
� �3c

�x2�y
+

�3c

�y3� −
�c

�y
� �3c

�x�y2 +
�3c

�x3�	 , �16�

where the streamfunction has been split into a rotational ���
and a potential component ��pot�, so that �=�+�pot. If
Schwartz’s more informal approach is employed, it can be
shown �31� that E=1 and F=2 Re. Under such circum-
stances Eq. �16� reproduces the corresponding equations for
the vorticity derived in Refs. �33,34�. Note that as a result of
employing the streamfunction-vorticity formulation the addi-
tional pressure �, and with it the second Korteweg stress
constant 	 �see Eq. �4�� are eliminated, so that � is the only
additional parameter resulting from the Korteweg stress
terms. The situation in which Korteweg stresses are ne-
glected is obtained by setting �=0, while higher magnitudes
of � should result in miscible patterned structures close in
appearance to their immiscible counterparts.

The rotational part of the streamfunction is smooth and
can be obtained with high accuracy, while the potential part
is related to a flow singularity at a source �or sink� located at
the origin making accurate computations more difficult near
these locations. The dimensionless potential velocity field
associated to a source or sink can be formally written as

upot =
1

r
. �17�

However, to avoid numerical instabilities near r=0 in Eq.
�17� we smooth out the point source or sink by distributing
their strength in a Gaussian way over a small circular core
region. To accomplish this, we consider a “Gaussian source”
which is characterized by a core size �=0.075 so that the
dimensionless potential radial velocity is expressed as

upot =
1

r
�1 − exp�− r2/�2�� . �18�

For more details about the Gaussian source scheme, the
reader is directed to Refs. �37,50�. Note that all the velocity
distributions have the same functional form for the cases of
injection �source� and suction �sink�, but the velocity direc-
tions are obviously reversed.

Our numerical simulations for both injection and suction
begin with an initial condition given by a stable circle of a
given radius r centered on the axis of rotation �origin of the
x-y plane�. To set the initial condition we follow the ap-
proach originally proposed in Ref. �13�, and use the base-
state axisymmetric solution for an stable injection situation,
which is represented by an error functionlike distribution
�see Eq. �15� in Ref. �13��. Within such an approach, the
duration of the stable injection is given by t=r2 /2. More
specifically, for injection we start with a circular core of
radius r=rc=0.1, so that the initial condition is taken as the
base state at time t=0.005. On the other hand, for suction we
use a circle of initial radius r=1, so that the stable injection

time to produce this initial state is t=0.5. In order to break
the artificial symmetry of the system, we impose a small
amplitude perturbation around the initial interface location.
To accomplish this, a small amount of random noise is added
at all grid points positioned near the 0.5 concentration loca-
tion so that c=0.5+� at that region, where �
=0.01 sin�2N� denotes the perturbation, and N stands for a
set of random numbers between 0 and 1. Throughout this
work, unless otherwise stated, we apply the same set of ran-
dom numbers N to ensure the same initial condition for the
situations under study.

For the case of injection a square computational domain
with width of two characteristic lengths is chosen, so that
−1�x� +1 and −1�y� +1. To minimize artificial effects
of the Gaussian source, we start the simulation with an initial
radius of rc=0.1, that is slightly larger than the core size of
the Gaussian source �. As mentioned earlier, this initial con-
dition corresponds a stable injection time period of 0.005.
The inner fluid is injected at the origin of the coordinate
system, and the simulations are terminated when the inner
fluid reaches a distance of 10 grid points away from the
computational boundaries, in such a way that for injection
the boundary conditions are prescribed as

x = � 1:� = 0,
�c

�x
= 0, �19�

y = � 1:� = 0,
�c

�y
= 0. �20�

As discussed above, the initial condition for the case of
suction �sink flow� is assumed to be a unit radius circular
blob of the inner fluid which is withdrawn from the origin.
To avoid effects from the computational boundaries at early
time stages, we slightly extend the computational domain in
such a way that for suction we consider −4 /3�x� +4 /3
and −4 /3�y� +4 /3. In addition, as long as the mixing in-
terface does not reach the Gaussian core, the artificial effects
of the Gaussian velocity distribution will be insignificant. In
a word, the numerical treatments for the sink and source
flows are identical and the boundary conditions �19� and �20�
are applied, but with a slightly extended computational do-
main for the sink flow.

We close this section by outlining the numerical scheme
we use, which is based on a combination of spectral methods
and compact finite differences. Much more details about
these particular numerical methods can be found in well-
known books on the subject �51,52� and also in Refs.
�50,53,54�. The simultaneous application of these two highly
accurate numerical methods is essential to reproduce the fine
and intricate miscible fingering structures successfully. Re-
garding the particular choice of the boundary conditions
�Eqs. �19� and �20��, they consider that the streamfunction is
zero for all the computational boundaries. Nevertheless, to
apply the spectral method along the x direction, we need to
modify the boundary condition as �� /�x=0. The validity of
this modified condition is achieved by carefully keeping the
mixing interface far away from the computational boundaries
at all times, so that the vorticity and streamfunction induced
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by the concentration gradients are vanishingly small, and
negligible near such boundaries. All this is confirmed by the
nearly zero values of the streamfunction obtained from the
actual numerical output data. The streamfunction, Eq. �15�, is
solved by a pseudospectral method �51,52�, and a Galerkin-
type discretization of cosine expansion of c, and � are em-
ployed in the x direction. In the y-direction discretization is
accomplished by sixth-order compact finite differences �53�.
The latter is also used to evaluate the vorticity equation �16�.
In addition, a third-order Runge-Kutta procedure �55� on
time and spatial sixth order compact finite difference
schemes are employed to solve the concentration equation
�Eq. �13��, and advanced in time. It should be noted that,
unlike many schemes based on the velocity and pressure
variables, the mass conservation properties are not a concern
for the present numerical approach, since the formulation of
the governing equations in terms of the vorticity and stream-
function satisfies the continuity equation �Eq. �11�� identi-
cally. The numerical code has been successfully used for
miscible flow in other geometries �27,37,56,57�, and is quan-
titatively validated by comparing the growth rates with the
values obtained from the linear stability theory in a plane
front �37,50,54�. More details on the implementation and
quantitative validation of these schemes are specifically pro-
vided by Refs. �18,50,54�.

III. RESULTS AND DISCUSSION

A. Outward radial flow

We begin our analysis by focusing on the most traditional
case in which the inner fluid is less viscous, and injected
against the more viscous outer fluid, so that the viscosity
contrast A=0.874, and Pe=103. This particular value of the

viscosity contrast results in significant fingering and it is ac-
tually the largest value of A we can simulate for outward
radial flow; so, it will be used throughout Sec. III A. All the
patterns depicted in this section are plotted inside a square
frame that has the same dimensions of the entire computa-
tional domain �−1�x� +1 and −1�y� +1�.

First, we consider the situation in which the Hele-Shaw
cell is not rotating, so that centrifugal and Coriolis effects are
absent ��=0, Re1=0, and Re2=0�. As mentioned in Sec. I
the equivalent immiscible situation resulted in fanlike pat-
terns in which wide outward fingers are formed, and tend to
split at their tips. We investigate how the shape of the emerg-
ing patterns behave under miscible circumstances, and try to
verify explicitly if the miscible patterns present a better re-
semblance to their immiscible counterparts as the Korteweg
stress is added and its strength is gradually increased.

Figure 2 illustrates the effects of increasingly larger Ko-
rteweg stress parameter � on the evolution of the miscible
patterns under injection. The columns in Fig. 2 are arranged
according to the value of the Korteweg stress parameter: first
column �Figs. 2�a� and 2�d�� for �=0; second �Figs. 2�b� and
2�e�� for �=−10−5; and third �Figs. 2�c� and 2�f�� for
�=−2.15�10−5. The top row 2�a�–2�c� depicts the patterns
at time t=0.1, while the bottom row 2�d�–2�f� shows the
structures formed for a later time t=0.2. When �=0 miscible
viscous fingering patterns arise as the mixing front evolves,
unfolding a process of mutual entrainment characterized by
finger competition, and finger merging �see Figs. 2�a� and
2�d��. The resulting pattern is intricate and reveals the for-
mation of relatively thin fingering structures, which tend to
become a little wider as time progresses. As detected by
experiments in miscible flows driven by injection �11,12�,
finger interpenetration is observed as shorter fingers merge to
larger ones, sometimes leading to the entrapment of small

(a)

(d)

(b)

(e)

(c)

(f)

FIG. 2. �Color online� Concentration images at times t=0.1 �top row� and t=0.2 �bottom row�, A=0.874, and Pe=103 for �=0 ��a� and
�d��; �=−10−5 ��b� and �e��; �=−2.15�10−5 ��c� and �f��.
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portions of the dark fluid inside the light one �Figs. 2�a� and
2�d� and Figs. 2�b� and 2�e��.

As � is increased �Figs. 2�b� and 2�e� and Figs. 2�c� and
2�f�� the stabilizing role of the Korteweg stresses is dis-
closed, and the typical number of fingers is decreased. A
more relevant effect of � refers to its influence on the shape
of the fingers: nonzero � makes the outward fingers become
wider, assuming more rounded fingertips. Since Korteweg
stresses restrict the growth of the finger lengths, and also
reduce their number, in order to maintain the amount of fluid
flux unchanged one would expect the fingers to become
wider. However, finger interpenetration can still be observed
in Figs. 2�b� and 2�e� for intermediate values of �. For the
case of stronger Korteweg stresses simulated in Figs. 2�c�
and 2�f� the number of fingers is further reduced, and the
resulting fingering patterns do resemble the ones obtained by
experiments �3,4,11� and numerical simulations �6,7� of the
analogous immiscible situation. A fanlike pattern, presenting
broad fingers and showing finger tip splitting is clearly seen
in Fig. 2�f�. Moreover, finger interpenetration is no longer
present. These results reinforce the claim that Korteweg
stresses do act similar to an effective surface tension for
miscible flows �19,20,56,57�, by stabilizing shortest wave-
lengths. The shape similarity between our simulated miscible
patterns shown in Figs. 2�c� and 2�f� �obtained for high Ko-
rteweg stress and largest possible viscosity contrast A
=0.874� and well-documented experimental results for im-
miscible radial flows �performed for A=1 in Refs. �3,4,11��
also provides an indirect validation of our theoretical ap-
proach and numerical methodology.

We proceed by analyzing the case in which in addition to
injection, we consider the effects of Hele-Shaw cell rotation.
Specifically, we consider that the rotational dimensionless

parameter �=20. For now we focus on centrifugally driven
effects and analyze a rotational case in which the Coriolis
force is not taken into account so that Re1=Re2=0. Figure 3
illustrates the diffusing patterns at t=0.2 �top row� and at t
=0.275 �bottom row� for three different values of �: 0 ��a�
and �d��; −10−5 ��b� and �e��; and −2.15�10−5 ��c� and �f��.
These are exactly the same values of � used in the simula-
tions shown in Fig. 2. Note that Figs. 3�a�–3�c� can be
readily compared to Figs. 2�d�–2�f� also taken at t=0.2 and
for which rotational effects were not included. By contrast-
ing these figures we notice that the most noteworthy effect of
the centrifugal force refers to its influence on the typical
length of the fingers: with the inclusion of rotation, which is
a stabilizing factor in this outward radial flow situation, the
outward fingers become significantly less elongated. In addi-
tion, both finger interpenetration and finger tip- splitting tend
to be suppressed in Fig. 3. As a result the typical fanlike
pattern �Fig. 2�f�� is replaced by a fairly regular array of
fingers, which are flat at their tips, resulting in a pattern that
looks similar to a cog wheel �Fig. 3�c��. Although the time
taken in Figs. 3�d�–3�f� is a little longer than the time chosen
in Figs. 3�a�–3�c�, the shape of the patterns remain basically
unchanged. The fact that we can go further in time in Fig. 3
as compared to the time considered in Fig. 2 reinforces the
fact that the centrifugal force acts to stabilize the system.
Even though this stabilizing effect is not really surprising, it
is interesting to see how the typical fingering patterns in-
duced by injection �Fig. 2� can have their morphology modi-
fied via the action of centrifugal effects at fully nonlinear
stages. These numerical findings are in line with the analyti-
cal results of Ref. �24� where the stabilizing role of rotation
is used to suppress finite time cusp singularities in the ab-
sence of surface tension for the outward radial flow of im-
miscible fluids.

(a) (b) (c)

(d) (e) (f)

FIG. 3. �Color online� Concentration images at times t=0.20 �top row� and t=0.275 �bottom row�, A=0.874, Pe=103, �=20, and
Re1=Re2=0 for �=0 ��a� and �d��; �=−10−5 ��b� and �e��; �=−2.15�10−5 ��c� and �f��. �a�–�c� should be contrasted to Figs. 2�d�–2�f� which
have been simulated for exactly the same physical parameters and time, but for �=0.
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We turn to the situation in which Coriolis effects are in-
cluded, meaning that the Reynolds numbers of the fluids are
nonzero. Figure 4 depicts the patterns obtained at time
t=0.275, considering that �=20 and Re1=0.01 for the
cases: �a� �=0, Re2=0.03; �b� �=−2.15�10−5, Re2=0.03;
�c� �=−2.15�10−5, Re2=0.06. Notice that the time taken in
Fig. 4 is equal to the one considered in Figs. 3�d�–3�f�. So,
we can make an interesting parallel between these figures.
By inspecting Fig. 4�a� for which �=0 we see that the out-
ward moving fingers no longer evolve radially as in Fig.
3�d�, but present an evident tendency to turn in the clockwise
direction. This is a clear indication of the action of the Co-
riolis force: the actual spin direction of the Hele-Shaw cell is
counterclockwise, thus the finger tip motion is retrograde, so
that the outgrowing fingers move “backward.” This is also
true when we have nonzero Korteweg stresses as shown in
Figs. 4�b� and 4�c� where the fingers bent toward the clock-
wise direction. These last two figures should be contrasted
with Fig. 3�f� obtained for the same value of �, where Cori-
olis effects are absent. Note that the finger bending phenom-
enon is even more visible in Fig. 4�c� leading to a pattern
that is similar to a pinwheel in appearance. This is due to the
fact that a larger Reynolds number has been used for the
more viscous fluid �Re2=0.06� in Fig. 4�c�. When the inner
fluid is the lighter one, the Coriolis force acts to destabilize
the interface by deviating the fingering structures along the
azimuthal direction.

An alternative and more quantitative account of the role
played by Korteweg stresses, centrifugal, and Coriolis effects
in determining the behavior of the evolving mixing interface
is offered by the growth of a characteristic quantity related to
the perimeter of the mixing boundary region. Unlike the situ-
ations involving immiscible fluids, the mixing region be-
tween two miscible fluids is not a well-defined sharp inter-
face, but rather a diffuse layer. Nevertheless, in the region of
significant concentration gradient, the normalized mixing in-
terfacial length can be well represented as �27,37,56�

Ln�t� =
1

LB�t�S


� �c

�x
�2

+ � �c

�y
�2

dxdy ,

where S is the entire computational domain. This quantity
expresses the ratio of the length of the diffuse interface to the
perimeter of the initial circular pattern �base state� LB�t�
=2
2�t+0.005� at a given time t.

Figure 5 depicts the time evolution of the normalized
mixing interfacial length Ln for A=0.874 and Pe=103, for
some of the situations illustrated in Figs. 2–4, �a� in the
absence of rotation and for increasing values of the Ko-
rteweg stress parameter � �related to Fig. 2�; �b� in the ab-
sence of Coriolis effects, for �=−2.15�10−5, and four in-
creasing values of the dimensionless rotation number �
�related to Figs. 2�c�, 2�f�, 3�c�, and 3�f��; �c� when Coriolis
effects are taken into account, for �=20, �=−2.15�10−5,
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FIG. 5. Time evolution of the normalized interfacial length Ln for A=0.874, Pe=103, and �a� �=0, Re1=Re2=0, and different values of
�; �b� Re1=Re2=0, �=−2.15�10−5, and different values of �; �c� �=20, �=−2.15�10−5, and different values of Re2. In �c� note that if
Re2=0 �Re2�0� then Re1=0 �Re1=0.01�.

(a) (b) (c)

FIG. 4. �Color online� Concentration images at time t=0.275, A=0.874, Pe=103, �=20, and Re1=0.01 for �a� �=0, Re2=0.03; �b� �
=−2.15�10−5, Re2=0.03; �c� �=−2.15�10−5, Re2=0.06. �a� should be compared to Fig. 3�d�, while �b� and �c� should be compared to Fig.
3�f�.
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and three different values of Re2 �related to Figs. 3�c�, 3�f�,
4�b�, and 4�c��. In Fig. 5�c� note that if Re2=0 �Re2�0� then
Re1=0 �Re1=0.01�.

The growth of normalized interfacial length serves as a
good indicator for the intensity of fingering at the mixing
interface. From Fig. 5�a� it is evident that the presence of
increasingly larger Korteweg stresses tend to stabilize the
diffuse interface. When �=0 we observe a very steep growth
of Ln at earlier times, followed by its “saturation” for longer
times. For short times, we notice that the slope of the curves
are reduced for larger �. In addition, for all times the curves
for lower � are always above the ones of higher �. Again,
this is in accordance with the surface-tension-like role of the
Korteweg stress, which tends to stabilize the mixing inter-
face. It is interesting to note that for �=−10−5, after an in-
tense initial growth, Ln reaches a maximum, and then starts a
slow decrease. This behavior is due to the finger merging
process as depicted in Figs. 2�b� and 2�e�. On the other hand,
for �=−2.15�10−5 Ln tends to increase and show no signs
of saturation. This happens because finger merging and fin-
ger interpenetration are suppressed for higher �, while finger
tip- splitting emerges, favoring interfacial growth �see Figs.
2�c� and 2�f��.

As to the role of rotation, since for these injection cases
the inner fluid has a lower density, Fig. 5�b� reproduces the
expected behavior: larger values of � lead to increasingly
stable interfaces, resulting in lower values of Ln. Of course,
these results are not surprising, but offer a more quantitative
verification of the equivalent visual information provided by

the patterns shown in Figs. 2�c�, 2�f�, 3�c�, and 3�f�. How-
ever, the situation described in Fig. 5�c� regarding the influ-
ence of the Coriolis force is certainly more interesting. It is
well known from previous analytical �31� and numerical �33�
studies that the Coriolis force acts to stabilize the interface if
the inner fluid is more dense �see also Fig. 6�. On the other
hand, by inspecting Fig. 5�c�, it is clearly verified that, if the
inner fluid is the less dense, now the Coriolis effects tend to
destabilize the interface. These effects are easily captured
from Fig. 5�c� where the curve for a given Re2�0 is located
above the curve for Re2=0. The relatively modest destabiliz-
ing effect exhibited in Fig. 5�c� can also be visualized by
contrasting Fig. 3�f� with Figs. 4�b� and 4�c�. Finally, notice
that the higher Re2 is the larger Ln is, reinforcing the claim
that stronger Coriolis effects lead to increased interface de-
stabilization if the inner fluid is the lower density one.

We close this set of numerical experiments on outward
radial flow by analyzing one last situation in which the in-
jected fluid is now more viscous and more dense than the
displaced fluid. Since in the absence of rotation this setup is
obviously stable regarding viscosity difference, we focus on
the case in which the cell rotates, so that the outgrowing
diffusing interface is centrifugally unstable. Moreover, in or-
der to produce significant fingering within the computational
domain, we take a large value of �. Coriolis force effects are
also discussed. At the same time, to avoid possible problems
with the resolution of the images and with the convergence
properties of the numerical code, we consider a relatively
lower value for the Péclet number. From Eq. �14� one can
verify that for a fixed �, a lower value of Pe means enhanced
diffusion, which tends to stabilize interfacial disturbances.
Figure 6 illustrates the resulting patterns obtained for A
=0.874, Pe=2.0�102, and �=102: on the top row Coriolis

FIG. 6. �Color online� Concentration images for A=0.874, Pe
=2.0�102, and �=102, when ��a� and �b�� Coriolis effects are
neglected �Re1=0, Re2=0� for �a� �=0, t=0.22, �b� �=−10−4, t
=0.25; and when ��c� and �d�� the Coriolis force is taken into ac-
count �Re1=0.01, Re2=0.07� considering that �c� �=0, t=0.26; �d�
�=−10−4, t=0.27.

FIG. 7. Streamlines of the situations shown in Fig. 6.
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effects are neglected �Re1=0, Re2=0�, and on the bottom
row they are included �Re1=0.01, Re2=0.07�. The first col-
umn in Fig. 6 depicts the patterns for �=0, and the second
column shows the case in which �=−10−4. In contrast to
what we have done in previous figures of this section the
snapshots of the plots shown in Fig. 6 are not taken at iden-
tical times. Instead, we terminate the simulations when the
outermost finger reaches the location of ten grid points away
from the computational boundaries. This is done to avoid
boundary effects. Of course, depending on the physical pa-
rameters considered in each computational run, this specific
location will be reached at different times. These values of
time can be used to determine the degree of instability of the
system, since shorter times indicate a more unstable situa-
tion.

The fact that in Fig. 6 the injected fluid is more viscous
and of higher density result in patterns that are very different
from those depicted in Figs. 2–4. In Fig. 6�a� we see the
formation of interesting spiny structures containing long and
thin, radially symmetric outward fingers, presenting a very
uniform finger-length distribution. Note that the internal por-
tion of the interface is fairy circular. The reason for this spiny
structure is mainly due to the delayed action of the centrifu-
gal force. It should be noted that the interface morphology is
determined by the competition of stable outward displace-
ment �injection� and unstable centrifugal driving. While the
stabilizing role of injection is most significant at early time
�when the interface is near the origin�, the centrifugal force
dominates at later times �when the interface far away from
the origin�. During the early times of stable displacement, the
initial perturbations are smoothed out by diffusion. Later on,
when the centrifugally-driven fingers start to develop, there
are almost no preferences given by the initial perturbation,
leading to an almost evenly distributed fingering pattern. In
addition, we point out that the development of the nearly
circular internal region is a good indication that no signifi-
cant grid orientation effects occur in the present simulation.

The introduction of a nonzero Korteweg stress makes the
interface more stable �Fig. 6�b��, leading to the formation of
a smaller number of shorter and thicker fingers which are
characterized by a significant finger length variability. All
these morphological changes are reminiscent of the surface-
tension-like role played by the Korteweg stresses. Similarly
to what was observed in Fig. 6�a�, the perimeter of the cen-
tral droplet illustrated in Fig. 6�b� remains circular.

A curious effect is revealed in Figs. 6�c� and 6�d� where
Coriolis effects are taken into account. Recall that in Fig. 4
�injection of the less viscous fluid� the most evident signature
for the presence of the Coriolis force was the observation of
bent fingers. However, in Figs. 6�c� and 6�d� instead of a
significant finger bending, we observe a clear droplet body
distortion, in which the internal region of the droplet is dis-
torted from circularity, assuming a squarelike shape. A simi-
lar body distortion phenomenon is also revealed in three-
dimensional immiscible spin coating experiments �58� and
numerical simulations �59�. It has also been found in previ-
ous simulations of miscible Hele-Shaw flow based on
Schwartz’s approach �33�. By contrasting Figs. 6�c� and 6�d�
with Figs. 6�a� and 6�b� the stabilizing role of the Coriolis
force is verified, so that the formation of long fingers is re-
strained.

We now turn to the discussion of the domination of body
distortion over fingering formation and finger bending as il-
lustrated in Fig. 6. When rotation is present, there are two
major kinds of physical effects: �i� the rising of fingering due
to centrifugal forces caused by increasing radial distance and
radial velocity; �ii� the body distortion or finger bending due
to the azimuthal Coriolis force. As demonstrated in a previ-
ous study of a purely rotating drop without injection �34�,
radial fingering occurs immediately. As time progresses, the
length of the fingers keep increasing, resulting in large local
velocities at the finger tips, while both the effective radius of
drop’s body and the local velocity nearby it are reduced. This
leads to a very significant azimuthal force at the fingers’ tips,
so that finger bending is dominant. On the other hand, the
presence of injection provides a very large local velocity to
contribute to the azimuthal force at the drop’s body, while
fingering is restrained by the stabilizing viscous effects asso-
ciated to the injection of the more viscous fluid. That ex-
plains why the body distortion is predominant earlier when
injection is present. Nevertheless, finger bending will be also
significant once the fingers reach a sufficiently large radial
distance where strong local velocity is induced by a very
long radius of gyration. This can be already seen by the
slight angular deviation of the finger tips in Fig. 6�c�, which
are quite different from the straight and radially oriented fin-
gering structures depicted in Fig. 6�a�.

We conclude this section by examining Fig. 7 which de-
picts the streamlines �contour lines of the streamfunction�
associated to the patterns shown in Fig. 6. The plot of the
streamlines provides additional quantitative assessment of
the miscible structures shown in Fig. 6, clearly illustrating
the local velocity direction. Both parts of the streamfunction
are included in Fig. 7, the potential part �pot �associated to
the source� and the rotational part �. It should be noted that
the straight line appearing at the negative x axis should be
ignored. It appears as a result of the discontinuity of the
streamfunction due to the source which is given by �pot=
− ��pot=� when it is approached in the counterclockwise
�clockwise� direction.

For the cases in which the Coriolis force is absent �Figs.
7�a� and 7�b��, basically no rotational velocity is generated in
the inner region occupied by the more dense fluid, so that the
streamlines grow radially outward due to the action of the
source. For the same reason, in the region outside the mixing
interface �which is mostly occupied by the lighter fluid�, the
potential radial streamlines are not significantly altered. Nev-
ertheless, the concentration variation at the mixing region
gives rise to a significant vorticity, and numerous eddy pairs
are formed locally. Each one of these eddy pairs can be
treated as local perturbing sources which originate a growing
finger with a nearly axisymmetric distribution, as shown in
the corresponding concentration images depicted in Figs.
6�a� and 6�b�. Note that the number of eddy pairs is signifi-
cant higher for the zero Korteweg stress case �Fig. 7�a�� lead-
ing to the formation of a larger number of fingers. Besides,
the strength of the eddy pairs, which can be represented by
the local density distribution of streamlines, is notably stron-
ger in Fig. 7�a� than in Fig. 7�b�. Therefore, the increased
number as well as the large magnitude of the local eddy pairs
confirm the enhanced instability associated to the case with-
out Korteweg stresses.
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If the Coriolis forces are taken into account �Figs. 7�c�
and 7�d��, despite the essentially radial distribution of the
streamlines in the inner region, and the formation of eddy
pairs at the mixing region, now the streamlines clearly turn
in the counterclockwise direction right outside the mixing
interface. Of course, this is due to the action of the Coriolis
force. Remember that since this is an outward radial flow, the
streamlines are directed from inside to the outside region.
Since the Coriolis forces acting against the actual rotating
direction of the Hele-Shaw cell depend on fluid density as
expressed in Eq. �2�, the local azimuthal velocity would be
smaller for a heavier inner fluid because of stronger Coriolis
forces locally. This explains the rotating fingering orientation
seen in Figs. 6�c� and 6�d�.

B. Inward radial flow

As commented in Sec. I the shape of the patterns formed
in the inward radial flow of immiscible fluids has been in-
vestigated by a couple of experiments �3,4�. It has been
found that during the suction of the more viscous fluid, the
initially circular interface shrinks and ramifies via the pen-
etration of multiple fingers of the outer less viscous fluid into
the inner one. Later on, a screening process takes place and
eventually a single finger reaches the sink, while the remain-
ing fingers basically stop growing. It is worth noting that, to
date there are no equivalent Hele-Shaw studies �neither ex-
perimental nor numerical� addressing the miscible displace-
ment for inward radial flow.

We examine the inward radial flow situation considering
that the fluids involved are miscible. Since the overall size of
the patterns decreases as the inner fluid is sucked out, we
reduced the plots’ frame size in order to facilitate the visual-
ization of the morphological details of the structures at later
times. Thus, all the patterns depicted in this section are plot-
ted inside a square frame that has the dimensions given by
−0.6�x� +0.6 and −0.6�y� +0.6. However, the dimen-
sions of the computational domain remain unchanged, being
−4 /3�x� +4 /3 and −4 /3�y� +4 /3. This set of numeri-
cal experiments illustrate patterns at a largest achievable time
before our numerical code becomes unstable. As the inward
moving fingers approach the sink, their local velocity be-
comes considerably high, producing significantly intense
vorticity. So, to avoid numerical instabilities we take the final
times as those for which the local vorticity reaches a certain

maximum magnitude �taken as �max=2000�. For larger values
of the vorticity ����max� fingering is too vigorous and the
code becomes unstable.

We have performed a number of numerical tests, and have
explicitly verified that the suction of a less viscous fluid is
indeed a stable pattern formation process both in the absence
and presence of rotation, resulting in a contracting circular
interface. Thus, we focus on the unstable situation regarding
suction, and examine the case in which the inner fluid is
more viscous and of higher density than the outer fluid. First,
we investigate the role of Korteweg stresses in the case that
the cell is not rotating so that only suction is acting. Figure 8
plots the resulting miscible patterns when the more viscous
and more dense fluid is withdrawn from the system for Pe
=2.0�103, A=0.905 with �a� �=0, at t=0.34; �b� �=−10−4,
at t=0.41; �c� �=−2.0�10−4, at t=0.43. When �=0 the typi-
cal miscible patterns are quite different from those obtained
experimentally for the suction of immiscible fluids �3,4�. In
Fig. 8�a� we observe the formation of a highly fragmented
pattern, in which a very large number of thin invading fin-
gers of the less viscous fluid compete as they move toward
the sink. A nonzero Korteweg stress is considered in Fig.
8�b� leading to a less convoluted structure that presents a
smaller number of invading fingers. These fingers are typi-
cally thicker than the ones shown in Fig. 8�a�, and their ends
are more bulbous. The stabilizing role of the Korteweg
stresses is evidenced by the fact that the maximum time
taken in Fig. 8�b� is larger than the one obtained in Fig. 8�a�.

The magnitude of � is further increased in Fig. 8�c� re-
sulting in a pattern for which only a couple of fingers actu-
ally can “win the race” toward the center. The remaining
fingers which have been left behind are screened off, and
their velocities are significantly reduced. Although the gen-
eral properties of the pattern illustrated in Fig. 8�c� for the
highest value of � are in line with the ones experimentally
detected for inward radial flows with immiscible fluids �4�,
the agreement between their specific morphological features
is not that good. This is in part due to the fact that the
immiscible experiments in Ref. �4� take A=1, while the mis-
cible simulation shown in Fig. 8�c� considers that A=0.905
�with �=−2.0�10−4�. However, a much better agreement
between our numerical simulations and the typical experi-
mental pattern found in �4� is obtained in Fig 9�c�, where we
have used a higher value for the viscosity contrast �A
=0.92�, a larger magnitude for the highest Korteweg stress

(a) (b) (c)

FIG. 8. �Color online� Concentration images for inward radial flow with A=0.905, Pe=2.0�103, �=0, and Re1=Re2=0 for �a� �=0,
t=0.34; �b� �=−10−4, t=0.41; �c� �=−2.0�10−4, t=0.43.
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parameter ��=−5.0�10−4�, in conjunction with a slight
modification of the initial conditions with respect to the ones
used in Fig. 8. As illustrated in Fig 9�c� the increase in �
favors the penetration of a smaller number of fingers, and
eventually only a longer dominant finger reaches the center.
For completeness, Figs. 9�a� and 9�b� are plotted for lower
values of �. Even though the patterns shown in Figs. 9�a� and
9�b� are somewhat similar to the corresponding structures
illustrated in Figs. 8�a� and 8�b�, Figs. 9�c� and 8�c� are
markedly different. Most importantly, the miscible pattern
simulated in Fig. 9�c� for larger � has a much closer resem-
blance with the experimental immiscible pattern depicted in
Fig. 15 of Ref. �4�. It is in fact reassuring to see that the
immiscible behavior for inward radial flow is correctly re-
covered by our numerical simulations when � is sufficiently
large.

The role of rotation for inward radial flow is analyzed in
Fig. 10. Unfortunately, since rotation destabilizes the system
even further, numerical instabilities arise so that we could
not simulate for A=0.92 as we did in Fig. 9, but instead for
A=0.905 as in Fig. 8. So, Fig. 10 considers the same physi-
cal parameters and initial condition employed in Fig. 8, but
now adding rotational effects. More precisely, Fig. 10 illus-
trates the resulting patterns obtained for A=0.905, Pe=2.0
�103, and �=3: on the top row Coriolis effects are ne-
glected �Re1=0, Re2=0�, and on the bottom row they are
included �Re1=0.01, Re2=0.06�. Moreover, the first �second�
column considers that �=0 ��=−10−4�. To investigate the
role of rotation, we begin by contrasting Figs. 10�a� and
10�b� to Figs. 8�a� and 8�b�, respectively. By inspecting these
figures it is clear that the simple addition of centrifugal
forces does not produce dramatic changes in the shape of the
patterns. Of course, rotation drives the system more unstable
and makes the invading fingers to approach the sink more
rapidly. In addition, the inward fingers in Fig. 10�b� look a
little thicker and present more inflated tips than in Fig. 8�b�.

A completely different scenario is observed when the Co-
riolis effects are taken into consideration �Figs. 10�c� and
10�d��. By comparing Fig. 10�a� to Fig. 10�c�, and Fig. 10�b�
to Fig. 10�d�, we see that the morphology of the patterns are
drastically modified: the number of inward fingers is consid-
erably reduced, and their trajectories are clearly deviated
from the radial direction. During sucking the inward fingers
meander toward the sink and tend to bend in the clockwise
direction, while the more external parts of the outer fluid

form “petals” which turn in the counterclockwise direction.
The result are patterns �in particular the one depicted in Fig.
10�d�� that resemble four-leaf clovers. As expected, both pat-
tern stabilization and finger bending are typical effects
caused by the Coriolis force. However, the precise morpho-
logical changes introduced by the Coriolis effects are decid-
edly nontrivial, and a little hard to be predicted without re-
sorting to full numerical simulations of the advanced
nonlinear stages.

The streamlines corresponding to the patterns shown in
Fig. 10 are illustrated in Fig. 11 �as in Fig. 7 please neglect
the straight line located along the negative x axis�. When
Coriolis effects are neglected �Figs. 11�a� and 11�b�� we ob-
serve the clear dominance of radially oriented streamlines
�due to the influence of the sink�, which are only modestly
altered by a few eddy pairs at the regions where fingering is
active. This is very different from behavior of the injection
cases analyzed in Figs. 7�a� and 7�b�, where we had a mostly
radially oriented distribution of streamlines interrupted by a
significant larger number of eddy pairs located at the mixing
interface. The reason for the formation of a smaller number
of eddy pairs in Figs. 11�a� and 11�b� can be attributed to the
prevalence of the potential sink flow over the rotating flow
components in the inward flow case. The rotational compo-
nent is perturbed by the vorticity produced by viscous effects
associated with the local velocity. In contrast, the potential
component is related to the sink flow that depends inversely
on the radial distance. Since in Figs. 11�a� and 11�b� fluids
travel toward to the origin, the major contribution for these
streamlines will be due to the potential inward flow. In addi-
tion, the formation of a few more eddy pairs in Fig. 11�b� can
be explained by the fact that in this case fingers can move
closer to the origin, where higher local potential velocity
would generate a more significant vorticity, so that the rota-
tional component velocity would be more intense, resulting
in the formation of some eddy pairs.

Figures 11�c� and 11�d� display the streamlines if the Co-
riolis forces are taken into consideration. For the same rea-
sons presented in the analysis of the streamlines for the in-
jection case �Fig. 7�, more intense Coriolis forces opposing
counterclockwise fluid rotation are imposed to the more
dense inner fluid. As a result, similar types of streamline
patterns of those shown in Figs. 7�c� and 7�d� are obtained in
Figs. 11�c� and 11�d�. However, recall that in the inward flow
case of Fig. 11 the streamlines travel toward the sink �they

FIG. 9. �Color online� Concentration images for inward radial flow with A=0.92, Pe=2.0�103, �=0, and Re1=Re2=0 for �a� �=0, t
=0.26; �b� �=−10−4, t=0.36; �c� �=−5.0�10−4, t=0.39.
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are directed from the outside to the inside region�, meaning
that they actually turn in the clockwise direction. This ex-
plains the clockwise deviation of the invading �inward mov-
ing� fingers as shown in the concentration images in Figs.
10�c� and 10�d�.

IV. CONCLUDING REMARKS

In this work, we have revisited the immiscible radial fin-
gering problem in Hele-Shaw cells, now considering that the
fluids are miscible. In addition to injection or suction, the
confined system can be subjected to rotation, so that centrifu-
gal and Coriolis forces may affect the evolution of the dif-
fusing interface in a nontrivial manner. This complex pattern
formation problem is examined in detail through intensive
numerical simulations.

Our numerical experiments reveal that, when fingering is
initiated between miscible fluids, the lack of surface tension
at the moving interface results in patterns which are much
richer in detail and gross structure. In fact, we have observed
dramatic changes in pattern morphology as the main control
parameters of the problem are varied. Depending on the bal-
ance among injection, suction, diffusive, and rotational ef-
fects a gallery of pattern-forming structures is obtained,
ranging through fragmented, cog wheel, pinwheel shaped,
spiny, and cloverlike patterns. In addition to unveiling a wide
variety of shapes, we have verified that the miscible patterns
can be made to resemble the more familiar morphologies of
their immiscible counterparts �i.e., typical fanlike patterns

for outward flow, and a characteristic hierarchy of screened-
off fingers for inward flow� by conveniently increasing the
value of a Korteweg stress parameter. This finding is cer-
tainly reassuring, since it substantiates the surface tension-
like role of such stresses for miscible flows, and also indi-
cates the effectiveness and reliability of our numerical
scheme.

When contrasted to existing laboratory experiments and
other theoretical or numerical studies, the general features of
the simulated miscible fronts usually reveal good agree-
ments. We point out that some of the predicted shapes ob-
tained as the result of our simulations have not yet been
checked by experiments. Needless to say that we welcome
and encourage experimentalists to perform such studies, and
test our numerical predictions. On the other hand, we also
note that a few detailed structural features revealed by exist-
ing experiments with miscible fluids �10,11� have not been
completely captured by our numerical simulations. For ex-
ample, we have not reproduced the “flowerlike” patterns ob-
tained by Paterson �10�, and the peculiar sidebranched struc-
tures found by Chen �11�.

Although the specific reasons that could justify our inca-
pacity to reproduce a few features of some specific miscible
patterns are not at all clear, on the theoretical side one could
speculate that this maybe linked to the limitations of the
Hele-Shaw approximation �28�, indicating that under certain
circumstances the concentration gradients can indeed be-
come high across the gap. If this is the case, three-
dimensional effects �44–46,60� may have a significant role
in determining the shape of the emerging patterns, so that
full 3D Stokes equations or the Brinkman model could be
more appropriate to capture the instability features. Unfortu-
nately, the numerical implementation of these two schemes
are still considerably difficult. Nevertheless, there is also the
possibility that some of the detailed features found in these

(a)

(c)

(b)

(d)

FIG. 10. �Color online� Concentration images for A=0.905, Pe
=2.0�103, and �=3, when ��a� and �b�� Coriolis effects are ne-
glected �Re1=0, Re2=0� for �a� �=0, t=0.29, �b� �=−10−4, t
=0.38; and when ��c� and �d�� the Coriolis force is taken into ac-
count �Re1=0.01, Re2=0.06� considering that �c� �=0, t=0.37; �d�
�=−10−4, t=0.39.

FIG. 11. Streamlines of the situations shown in Fig. 10.
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experiments �10,11� may come from physical ingredients
still not considered by our theoretical model �and for that
matter, maybe also overlooked in �10,11��, such as the pos-
sible influence of non-Newtonian aspects �viscoelasticity
�61,62�, shear-thinning, and shear-thickening effects �63�� on
certain miscible displacements. Another possibly relevant as-
pect for radial miscible fingering, recently investigated by
Nagatsu et al. �64� involves viscosity changes due to varia-
tion in chemical species concentrations caused by chemical
reactions. Of course, the search for more quantitative rela-
tions between the observed miscible patterns and the physi-
cal properties of the fluids is a very exciting, challenging,
and still open topic that deserves attention from both theo-
rists and experimentalists.
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